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In a quarter-car vehicle model, optimal control schemes for an active suspension are
designed using a constrained optimization procedure. The control laws obtained minimize
the H2-norm of vehicle acceleration subject to constraints on r.m.s. values of the suspension
stroke, tire deformation and actuator force. Constraints imposed on feedback coefficients
define quasi-optimal control laws that show increased robustness to system parameter
variations and disturbances. To impact body acceleration at frequencies near the unsprung
mass mode, tire damping is introduced in the model. The optimal and quasi-optimal
control schemes were partially verified on a quarter-car simulator with a random road input
and the preliminary results are encouraging. The tests showed significant improvement
(3–5 dB) of body acceleration response in the frequency range up to 25 Hz and increased
robustness of the quasi-optimal control laws, that use lower amounts of spring cancellation.
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1. INTRODUCTION

The synthesis of active suspensions for advanced automotive applications aimed to
improve the ride comfort and handling properties of vehicles has been a topic of vigorous
research during the past two or three decades [1–13].

In early studies [1, 3] attention was given to the advantages of ‘‘skyhook’’ damping
which put damping in the system at sprung mass frequency vs (where v2

s = ks /ms , ks being
the suspension spring rate and ms the sprung mass) without deteriorating high frequency
performance.

The synthesis for a one-DOF quarter-car model is presented in reference [2] using
optimal filtering based on the Wiener–Höpf approach. In reference [5], the sprung mass
jerk is included in the model as an additional comfort measure. The design of an optimal
suspension based on a two-DOF quarter-car model is performed in references [6, 8] and
[2]. The results of the global study are presented in the form of ‘‘carpet’’ plots
parameterized in terms of the performance index weights.

Alternative control laws for active suspensions are evaluated in reference [9], with
the emphasis on the LQG compensator using suspension deflection as the measurement.
The robustness of the LQ/H2 controller to uncertainties in the passive suspension elements
for some ride regimes has been established in reference [12]. Some related aspects of the
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dynamics, optimal and adaptive control of vibrating and elastic systems were considered
in references [14–17].

In this paper a novel approach is presented to synthesizing an active suspension using
a constrained optimization procedure. We minimize a performance index which represents
r.m.s. passenger acceleration while r.m.s. suspension deflection and also r.m.s. tire
deformation are considered explicitly as constraints imposed on the system. This approach
does not require tuning the weighting parameters and obtains the best ride quality for given
suspension rattle space and road holding parameters. In addition, r.m.s. actuator force and
feedback coefficients can be also constrained.

The main advantage of the proposed method is that the desired optimal solution,
satisfying the required constraints, is now obtained explicitly. However, the associated
numerics are now more involved than in the conventional LQG case, since the proposed
method is based on general non-linear programming. In view of this, it can be said that
the two methods nicely complement each other. The LQG approach can be used in the
first phase to obtain the global overview of all the possible optimal solutions. The proposed
method could then be used to determine a specific optimal solution, using the above global
map as a basis for determining an initial, meaningful constraint set. Further refinements
of the solution would then be possible with the proposed method, which can accept many
additional constraints not suitable for the conventional LQG setting.

We design the following optimal control laws: a full state feedback; a partial state
feedback (excluding the term that is proportional to the tire deflection); and a control
scheme that contains the integral of the suspension deflection. The integral term was
introduced in reference [4] to eliminate the steady state position offset caused by external
force disturbances. It also appeared in reference [5] as the result of minimizing a jerk in
the performance index.

Constraints imposed on the feedback gains define quasi-optimal control laws which
employ less than optimal spring cancellation, h (where h= =C1=/ks and C1 is the gain that
is proportional to suspension deflection). The quasi-optimal control laws increase the
effective stiffness of the system in comparison with the optimal feedback and make the
plant less sensitive to system parameter variations and disturbances.

The analysis also showed the importance of accounting for tire damping in the model.
Tire damping couples the sprung and unsprung mass motions that affect passenger
acceleration at the wheelhop frequency, vu (where v2

u = kt /mu , mu being the unsprung mass
and kt the tire spring rate) [10].

The results of optimization are compared in the case of the full state feedback with the
corresponding LQG design. It is demonstrated, for a number of operational points, that
the discepancy in the optimal ride quality (r.m.s. vehicle acceleration) between the two
methods is less than 1% and is within the accuracy of numerical calculations.

The paper is organized as follows. In section 2 the suspension design problem is
formulated as an optimization problem with constraints. The results of optimization are
presented in section 3, with the preliminary test results based on a quarter-car hardware
simulator with random road input being summarized in section 4. Concluding remarks are
given in section 5.

2. VEHICLE DYNAMIC MODEL AND PROBLEM STATEMENT

We consider a quarter-car vehicle model (Figure 1) that is described by the vector
equation

ẋ=Ax+Gżr +Bu. (1)
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Here u is the control input, x is the vector of state variables, such that

x1 = zs − zu , x2 = żs , x3 = zu − zr , x4 = żu , (2)

where x1 and x3 are suspension and tire deflections from equilibrium position, and x2 and
x4 are sprung and unsprung mass velocities, respectively.

In equation (1), matrices A, B and G are defined as

0 1 0 −1 0

−v2
s −2jsvs 0 2jsvs 0

A=
0 0 0 1

, G=
−1

,

rv2
s 2rjsvs −v2

u −2rjsvs −2juvu 2juvu

0

1/ms

B=
0

, (3)

−r/ms

where vs =(ks /ms )1/2, vu =(kt /mu )1/2, r=ms /mu , ju = bt /2(mukt )1/2, js = bs /2(msks )1/2 and żr

represents the road roughness disturbance velocity input modelled as a white-noise process,
specified by

E[żr (t)]=0, E[żr (t1), żr (t2)]=2pAVd(t1 − t2). (4, 5)

In equations (4) and (5), E denotes the expectation and d( · ) represents the Dirac function,
with A and V being the road roughness factor and the vehicle speed, respectively.

The tire damping is included in the model (1)–(3). It was shown in reference [10] that
taking tire damping to be small but non-zero couples the motion of the sprung and
unsprung masses at all frequencies, and allows reduction of the passenger acceleration at
frequencies near the wheelhop mode vu .
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Figure 1. A quarter-car model with active suspension: ms =sprung mass, bs =suspension damping,
ks =suspension spring rate, mu =unsprung mass, kt =tire stiffness, bt =tire damping, u=actuator force,
zr =road displacement, zu =unsprung mass displacement, zs =sprung mass displacement.
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We define the following transfer functions

HA (s)=
z̈s (s)
żr (s)

, HRS (s)=
zs (s)− zu (s)

żr (s)
,

HTD (s)=
zu (s)− zr (s)

żr (s)
, Hu (s)=

u
żr (s)

, (6)

as the sprung mass acceleration, suspension deflection, tire deflection and actuator force
transfer functions, respectively.

Henceforth, we investigate feedback control laws which, in their most general form,
contain an integral term

u=− s
4

i=1

Cixi −C5 g
t

0

x1(t) dt. (7)

Introducing the integral term in equation (7) eliminates steady state position offset
caused by external disturbances and improves the high frequency NVH isolation [4, 5].

It is straightforward to obtain analytical expressions for transfer function (6) using the
dynamic model (1)–(3) and feedback control laws (7). In Appendix A, the transfer
functions (6) are derived for the case of full state feedback (C5 =0 in equation (7)).
Transfer functions for the general form control laws (7), accounting for an integral term,
are given in Appendix B. In Appendix C asymptotic properties of transfer functions are
analyzed and comparisons are given for the cases of a passive suspension, an active
suspension with full state feedback control (Ct =0 in equation (7)), and an active
suspension with control including an integral term.

Space H2 is defined as a space of functions which are square integrable on the imaginary
axis and analytic in the open right-half plane with the norm

>F>2 =01/2p g
a

−a

F(jv)F*(jv) dv1
1/2

. (8)

For the dynamic systems (1)–(3) with random input (4) and (5), the norm (8) of the
transfer functions (6) represents root mean square (r.m.s.) values of sprung mass
acceleration, suspension deflection, tire deflection and actuator force, respectively.

One can also evoke [5]

E[y2]=1/2pS0 g
a

−a

=H(v)=2 dv, (9)

where S0 =2pAV is a spectral density of the input żr , y is the system output and H is the
corresponding transfer function.

Combining the formulas (8) and (9), we obtain the r.m.s. values of sprung mass
acceleration, suspension deflection, tire deflection and actuator force:

Hrms
A =S1/2

0 >HA>2, Hrms
RS =S1/2

0 >HRS>2, Hrms
TD =S1/2

0 >HTD>2, Hrms
u =S1/2

0 >Hu>2.

The optimal control design problem can now be formulated as follows: given a dynamic
system (1)–(3) and control law (7), find optimal feedback coefficients from the convex set
C$V, C=(C1, . . . , C5)t minimizing the >HA>2-norm subject to constraints on the r.m.s.
values of the suspension deflection, the tire deformation and the actuator force:

min {>HA>2: C$V such that Hrms
RS E hr , Hrms

TD E hc , Hrms
u E hu}. (10)
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The optimal control solution of equation (10) provides the best ride quality (in the sense
of the above H2-norm) for the given suspension package, road holding and the actuator
force constraints.

3. OPTIMAL CONTROL SYNTHESIS

To obtain a solution of the optimal control problem (10) we use a MATRIXx

optimization module [18]. It solves the general non-linear programming problem

min
p

F(p), (11)

subject to

G(p)=0, hl EH(p)E hu , pl E pE pu . (12–14)

The optimization procedure parameters were selected as

R=10−4, dp =10−6, dt =10−8,

where R is the penalty parameter for controlling the search for a feasible region, dp is the
perturbation parameter for numerical gradient computation and dt is the tolerance on
optimality and feasibility [18]. The value of penalty parameter greater than one forces the
search to stay close to the known feasible range; a smaller value of R allows a broader
range of searching.

The cost function for optimization was selected as

F= k>HA>2, (15)

where scalar k was varied in the limits k=108–1012. Use of the scaling coefficient k
improves the accuracy of the optimization.

The relevant parameters for an illustrative example used for the optimization procedure
are

r=5·86, fs =1·49 Hz, fu =8·27 Hz, js =0·11, ju =0·017.

To evaluate the precision of the proposed method, the results of constrained
optimization can be compared in the case of the full state feedback with the corresponding
LQG problem solution [11]. Solving the LQG problem given weighting factors r1 and r2

in the performance index, we calculated the r.m.s. vehicle acceleration urms
LQG , the r.m.s.

suspension stroke Xrms
1LQG and the r.m.s tire deformation Xrms

3LQG . The optimal r.m.s.
suspension stroke Xrms

1LQG and r.m.s. tire deformation Xrms
3LQG values were then used as

constraints for numerical optimization. It was shown for several operational points that
typical differences between the optimal solution (r.m.s. vehicle acceleration Hrms

A )
determined from the above numerical optimization and the corresponding LQG optimal
value urms

LQG are less than 1%:

=Hrms
A − urms

LQG =
urms

LQG
Q 0·01.

This is a function of the number of iterations and the accuracy of the numerical
calculations.

The results of numerical optimization are shown in Figures 2 and 3. Optimal body
acceleration versus road velocity transfer functions are plotted for different constraints on
suspension packaging and road holding. Note that, due to non-zero unsprung damping,
there is now significant variability between these curves, even around the wheelhop
frequency, at which, ideally for ju =0, one should have an invariant point.
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Figure 2. Optimal body acceleration transfer functions ——, Passive suspension body accceleration transfer
functions; ----, optimal body acceleration transfer function for experiment 1 in Table 1; –·–·–, optimal body
acceleration transfer function for experiment 3 in Table 1; · · · · · , optimal body acceleration transfer function
for experiment 5 in Table 1.

We investigate control laws (7) while setting to zero the tire deflection term (i.e., C3 =0),
since the tire deflection is difficult to measure.

In Table 1 are presented the optimal normalized r.m.s. body acceleration value J	 opt
a , the

optimal feedback coefficients and normalized r.m.s. values of suspension rattle space and
tire deformation constraints h	 rms

r and h	 rms
c . Optimal body acceleration versus road velocity

transfer functions for experiments 1, 3 and 5 in Table 1 are given in Figure 1.

Figure 3. Optimal and quasi-optimal body acceleration transfer functions: ——, Passive suspension body
acceleration transfer function; –·–·–, quasi-optimal body acceleration transfer function for typical rattle space
and tire deformation constraints h	 r =0·56, h	 c =0·23 and additional constraint on spring cancellation C1 q 0; ----,
optimal body acceleration transfer function for typical rattle space and tire deformation constraints h	 r =0·56
and h	 c =0·23.
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T 1

Optimal suspension design for control laws without tire deformation term (C3 =0), without
the integral term (C5 =0) and for different suspension deflection constraints (h	 rms

r ) and
minimal tire deformation constraints (h	 rms

c )

Number J	 opt
a h	 rms

r h	 rms
c C1 C2 C4

1 32·6 0·3 0·15 −5 199 3390 −760
2 21·2 0·4 0·2 −16 718 2430 223
3 14·4 0·5 0·26 −25 087 1460 524
4 9·85 0·6 0·34 −29 115 869 668
5 6·58 0·7 0·4 −31 331 464 745
6 4·24 0·8 0·46 −32 700 171 786
7 2·7 0·9 0·5 −33 548 −44 807

Numerical calculations showed that the rattle space and tire deformation constraints are
closely related. Any value of one constraint corresponds to a narrow range of the other
constraint where the performance measure could be improved. Given a rattle space
constraint (h	 rms

r ), Table 1 contains the lower bound of the corresponding tire deformation
constraint (h	 rms

c ). Increasing values of constraints imposed on the system improves the body
acceleration peformance and results in higher spring cancellation in the optimal control
law (Table 1).

Numerical calculations and prior experience [12] also showed that control laws with high
spring cancellation are sensitive to system parameter variations. Next, in Figure 3 and
Table 2 are presented results for optimization under typical rattle space and tire
deformation constraints h	 r =0·56 and h	 c =0·23, and with different constraints on spring
cancellation. In Figure 3 are shown optimal body acceleration transfer functions, while
Table 2 contains results of the optimization when imposing additional constraints on
feedback coefficient C1 to confine the spring cancellation. System eigenvalues for optimal
and quasi-optimal suspension design are presented in Table 2. For completeness,
optimization results for the control without integral term (C5 =0), with the same
constraints on spring cancellation as in Table 2, are presented in Table C2 (Appendix C).

Varying spring cancellation from the optimal value to zero results in increasing the
optimal performance index by only dJopt

a =11%. From Table 2 it follows that damping
terms and an integral term are increased when decreasing the spring cancellation. The last
line in the table defines a quasi-optimal control law that needs only damping terms and
an integral for implementation.

T 2

Optimal suspension design for control with integral term under rattle space and tire
deformation constraints of h	 rms

r =0·56 and h	 rms
c =0·23, and with different constraints on

spring cancellation

h (%) J	 opt
a C1 C2 C4 C5 E1,2 E3 E4 E5

85·7 15·22 −29 877 1 990 346 729 −4·42 52j −3·59 −3·22 −0·16
74·3 15·23 −25 936 4 693 372 2522 −4·32 52j −11·8 −1·5 −0·35
57·1 15·26 −19 995 7 280 408 2420 −4·32 53j −17·6 −1·87 −0·18
28·6 15·99 −9 999 12 480 511 4128 −4·22 53j −29·4 −1·82 −0·18
0 16·99 1 18 286 532 5874 −4·62 53j −42·8 −1·72 −0·19
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Figure 4. The optimal control test set-up: a block-diagram of the single wheel test stand.

4. CONTROL LAWS EVALUATION

The optimal control development and testing were carried out using a single wheel test
stand, in the form of a quarter-car laboratory simulator shown in Figure 4.

The active suspension linear actuator [19] used in this investigation is powered by a
permanent magnet synchronous motor. This actuator is positioned between the vehicle
body and a suspension control arm so as to provide a controlled force between the body
and wheel. The motor is a rotary design, with the rotary to linear force conversion
accomplished via a ballscrew/ballnut combination. The rotor of the motor is attached
directly to the ballscrew. As torque is generated by the motor, the torque is converted to
linear force by the ballscrew/ballnut. The motor is controlled by a solid state inverter which
synthesizes the proper motor phase current waveforms required to produce the
commanded torque.

The actuator used has the ability to produce up to 6200 N of force at velocities up to
1.5 m/s. In order to reduce the average power required, a parallel spring was used to
support the static vehicle weight. The system was designed to be energy efficient, requiring
no standby power draw, unlike conventional hydraulic active suspension systems.

Conventional tuning of control parameters proceeded in three steps. First, simulations
were performed and the control gains adjusted to provide good response over simulated
road surfaces. Next, the single-wheel test stand was used to verify and further tune the
gains. This test stand simulated different road surfaces using a hydraulic cylinder to move
the road surface vertically. The last step of tuning was performed in the test vehicle on
the road. Many road surfaces were driven over and performance measurements calculated
for each of these tests. Generally, on-road performance was very similar to that of the
single wheel test stand. This validation proved the value of the single wheel test stand, in
that it allowed easier and more consistent parameter adjustment.

The system measurements included body acceleration, wheel acceleration, and spring
deflection. The accelerations were numerically integrated and processed to yield velocities.
The AC-100 rapid development system tool was used and set up so that the optimal gains
could be adjusted from the computer screen. A HP control systems analyzer was used to
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measure the transfer function of the whole system, from road position input to body
acceleration output, using the optimal outer loop control laws.

In Figure 5 are presented body acceleration versus displacement transfer functions
obtained by using (1) previously developed, empirically (trial-and-error) based control
(curve 1), (2) optimal control (7) with h=85% spring cancellation (curve 2), and (3)
quasi-optimal control with zero spring cancellation h=0 (curve 3). Tests showed
improvement of the body acceleration response for optimal and quasi-optimal (3–5 dB)
control laws in the frequency range up to 25 Hz. From Figure 5 it seems that the plant
has two regions in which the three curves are relatively close. Note that the first region
appears at a frequency of about 11–12 Hz (the linear model that we used for optimization
has a resonance around 9 Hz). This is primarily due to non-linear tire properties. First,
this discrepancy shows the limitations of a linear tire model. Second, it demonstrates the
robustness of our method that offers increased performance in spite of modelling
inaccuracy.

The second region appears around 18 Hz as a result of vibrations of the test stand in
the vertical plane. This mode has not been included in the model. Also, at low frequencies
up to 1 Hz the system response is contaminated by additional noise and low frequency test
stand vibrations.

Although the experimental results do not correlate completely with analytical results due
to non-linearities and unmodelled dynamics, they show that the method is robust and can
improve immediately the system which was tuned previously by trial and error.

The test results also indicate that the performance of the quasi-optimal control laws for
the particular case considered here was better than the optimal. It is believed that this is
the result of improved robustness with respect to system modelling inaccuracies handled
by the quasi-optimal control.

5. CONCLUSIONS

An optimization procedure has been developed for optimal active suspension design that
minimizes r.m.s. body acceleration while r.m.s. suspension deflection, as well as tire
deformation, are considered as constraints imposed on the system. This approach offers
an alternative to the weighting-parameter tuning, and directly obtains the best ride quality
(in the sense of the H2-norm) for given suspension packaging and holding parameters.

Figure 5. The body acceleration/road displacement transfer function. 1, measured for passive suspension; 2,
measured for optimal suspension design (first line in Table 2); 3, measured for quasi-optimal suspension design
(last line in Table 2).
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Accounting for constraints on feedback coefficients defines quasi-optimal control laws
with less spring cancellation, that show promise for increased robustness to system
parameter variations and disturbances. This will be the subject of further study.

The asymptotic analysis of system transfer functions allows the determination of
conditions which result in improving the high frequency performance of the plant.

The procedure can be modified to accont for realistic road inputs, real actuator
performance limitations and also non-linear properties of suspension elements.
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APPENDIX A: TRANSFER FUNCTIONS FOR FULL STATE FEEDBACK

Equations (1)–(3) can be written in the form

msz̈s = ks (zu − zs )+ bs (żu − żs )+ u, (A1)

muz̈u =−ks (zu − zs )− bs (żu − żs )− u+ kt (zr − zu )+ bt (żr − żu ). (A2)

By adding equations (A1) and (A2) we find that

msz̈s +muz̈u = kt (zr − zu )+ bt (żr − żu ). (A3)

Transforming equation (A3) with zero initial conditions, we obtain

zu (s)=
(kt + sbt )zr −mss2zs

s2mu + sbt + kt
, (A4)

where s=jv. Substituting equation (A4) into equation (A1) and using control law (7)
yields

D(s)zs = da (s)zr , (A5)

where

D(s)=mumss4 + [mu (bs +C2)+ms (bt + bs −C4)]s3 + [(ks +C1)mu +(kt + ks

+C1 −C3)ms +(C2 + bs )bt ]s2 + [(bs +C2)kt + bt (C1 + ks )]s+(ks +C1)kt , (A6)

da (s)= s2(bsbt +C3mu −C4bt )+ s[(ks +C1)bt + kt (bs −C4)]+ kt (ks +C1). (A7)

Using equation (A5), we determine that

HA (s)= s da (s)/D(s). (A8)

From equation (A3), we also find that

zs (s)=
−(mus2 + bts+ kt )zu +(bts+ kt )zr

mss2 . (A9)

Substituting equation (A9) into equation (A2) yields

D(s)zu = du (s)zr , (A10)

where

du (s)=msbts3 + s2[bt (C2 + bs )+ms (kt −C3)]+ s[bt (ks +C1)+ kt (bs +C2)]+ kt (C1 + ks ).

(A11)

Now we can obtain the rattle space transfer function

HRS (s)=
da (s)− du (s)

D(s)s

=
−s2msbt + s[muC3 − (C2 +C4)bt −ms (kt −C3)]− kt (C2 +C4)

D(s)
(A12)
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and the road holding transfer function

HTD (s)=
du (s)−D(s)

D(s)s

=
−s3msmu + s2[mu (bs +C2)+ms (bs −C4)]− s(ks +C1)(mu +ms )

D(s)
. (A13)

Using equations (7), (A5), (A10), (A12) and (A13), the transfer function for the actuator
force is calculated as follows:

Hu (s)=−C1HRS (s)−C2
da (s)
D(s)

−C3HTD (s)−C4
du (s)
D(s)

. (A14)

APPENDIX B: TRANSFER FUNCTIONS FOR CONTROL WITH INTEGRAL TERM

Accounting for the integral term in the control law given by equation (8), we find that

DI(s)zs (s)= dI
a (s)zr , DI(s)zu (s)= dI

u (s)zr , (B1, B2)

where

dI
a (s)= sda (s)+C5(kt + sbt ), dI

u (s)= sdu (s)+C5(kt + sbt ),

DI(s)= sD(s)+C5[(mu +ms )s2 + bts+ kt ]. (B3)

Here, da (s), du (s) and D(s) are determined in Appendix A.
Using equations (B1)–(B3), we find expressions for transfer functions:

HI
A (s)= s

dI
a (s)

DI(s)
, HI

RS (s)=
sD(s)
DI(s)

HRS (s), (B4, B5)

HI
TD (s)=

du (s)−D(s)− sC5(mu +ms )
DI(s)

, (B6)

HI
u (s)=−(C1 +1/sC5)HI

RS (s)−C2
dI

a (s)
DI(s)

−C3HI
TD (s)−C4

dI
u (s)

DI(s)
. (B7)

Setting C5 =0 in expressions for transfer functions (B1)–(B7) makes them coincide with
formulas obtained in Appendix A.

APPENDIX C: ASYMPTOTIC ANALYSIS OF TRANSFER FUNCTIONS

The body acceleration transfer functions can be approximated at low frequencies as

HA (s), HI
A (s), HP

A (s)= s+ o(s), (C1)

where

lim
s:0

o(s)/s=0.

The high frequency asymptotes can be written as

HA (s), HI
A (s)=

bsbt +C3mu −C4bt

mums

1
s
+ o01s1. (C2)

From equations (C1) and (C2), it follows that acceleration asymptotes are independent
of the integral term.
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Setting f=0 (C3 =0, C4 =0) in equation (C2), we find the passive system high frequency
acceleration asymptote:

HP
A (s)=

bsbt

mums

1
s
+ o01s1. (C3)

By proper choice of feedback coefficients in equation (C2),

bsbt +C3mu −C4bt =0, (C4)

the active system could improve the high frequency performance of the plant when
compared to the passive system (C3):

HA (s), HI
A (s)=

(ks +C1)bt + kt (bs −C4)
mums

1
s2 + o01

s21. (C5)

Since tire deformation would be hard to measure, for control laws with C3 =0, equation
(C4) means that the tire damping coefficient C4 should compensate for the suspension
damping C4 = bs .

Asymptotic analysis results (C4) and (C5) differ from the results obtained in reference
[9] due the presence of the tire damping term bt in the dynamic model.

Using equations (A6), (A7), (A11), (A12), (B3) and (B5), we find the high and low
frequency suspension deformation asymptotes:

HRS (s), HI
RS (s), HP

RS (s)=−
bt

mu

1
s2 + o01

s21, (C6)

HP
RS (s)=−s

ms

ks
+ o(s), HRS (s)=−

C2 +C4

ks +C1
+ o(s), (C7, C8)

HI
RS (s)=−s

C2 +C4

C5
+ o(s). (C9)

From equation (C9) it follows that a suspension design with an integral term has a better
low frequency rattle space asymptote in comparison to control with C5 =0 that has a finite
dc gain (C8).

The tire deformation asymptotes are

HTD (s), HI
TD (s), HP

TD (s)=−
1
s
+ o01s1, (C10)

HTD (s), HI
TD (s), HP

TD (s)=−s
mu +ms

kt
+ o(s), (C11)

and from equations (A14) and (B7) we find the actuator force asymptotes:

Hu (s)=−
ks (C2 +C4)

ks + c1
+ o(s), HI

u = o(s), (C12)

Hu (s), HI
u (s)=0−C3 +C4

bt

mu1 1
s
+ o01s1. (C13)



.   .364

T C1

Asymptotic properties of transfer functions for passive suspension (PS), active suspension
(AS), and active suspension with integral term (IT)

Transfer function PS AS AS with IT

HA s:0 s s s

HA s:a
bsbt

mums

1
s

bsbt +C3mu −C4bt

mums

1
s

bsbt +C3mu −C4bt

mums

1
s

if bsbt +C3mu −C4bt =0 (ks +C1)bt + kt (bs −C4)
mums

1
s2

(ks +C1)bt + kt (bs −C4)
mums

1
s2

HRS s:0 −s ms /ks −C2 +C4

ks +C1
−s C2 +C4

C5

HRS s:a − bt

mu

1
s2 − bt

mu

1
s2 − bt

mu

1
s2

HTD s:0 −s mu +ms

kt
−s mu +ms

kt
−s mu +ms

kt

HTD s:a −1
s −1

s −1
s

Hu s:0 – −ks (C2 +C4)
ks +C1

0

Hu s:a – −0C3 +C4
bt

mu1 1
s −0C3 +C4

bt

mu1 1
s

T C2

Optimal suspension design for control laws without the tire deformation term (C3 =0),
without the integral term (C5 =0) and with different constraints on spring cancellation

h (%) J	 opt
a C1 C2 C4 E1,2 E3 E4

85·7 15·81 −28 645 2 660 316 −4.652 52j −6·0 −2·62
74·3 15·83 −25 977 4 019 329 −4·612 52j −9·6 −2·31
57·1 15·93 −19 994 7 034 370 −4·532 52j −16·9 −2·16
28·6 16·42 −9 998 11 987 469 −4·422 53j −28·2 −2·1
0 17·42 4 17 229 531 −4·7 2 5.73j −39·9 −2·1

Equation (C12) shows that the integral term improves the actuator low frequency
asymptote as well as the rattle space low frequency performance. The results of asymptotic
analysis are summarized in Table C1. In Table C2 are shown results of optimization for
the control without the integral term (C5 =0), with the same constraints on spring
cancellation as in Table 2.


